Search results for "Multiplicity results"

showing 10 items of 13 documents

Poincar é-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems. (Turin Fortnight Lectures on Nonli…

2002

Poincaré-Birkhoff theorem historical remarks multiplicity results
researchProduct

Multiplicity results for fourth order two-point boundary value problems with asymmetric nonlinearities

1998

Point boundaryFourth orderApplied MathematicsMultiplicity resultsConjugate pointsMathematical analysisMultiplicity (mathematics)AnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Multiplicity results for asymmetric boundary value problems with indefinite weights

2004

We prove existence and multiplicity of solutions, with prescribed nodal properties, to a boundary value problem of the formu″+f(t,u)=0,u(0)=u(T)=0. The nonlinearity is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite weights. We first study some auxiliary half-linear, two-weighted problems for which an eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of weighted eigenvalues. The proof is developed in the framework of topological methods and is based on some relations between rotation numbers and weighted eigenvalues.

lcsh:MathematicsApplied MathematicsMultiplicity resultsMathematical analysis34B15Of the formMultiplicity (mathematics)Mixed boundary conditionlcsh:QA1-939Asymmetric boundary value problem asymptotically linear two-weighted problems eigenvalue theory topological methods rotation number multiplicity resultFree boundary problemBoundary value problemAnalysisMathematicsAbstract and Applied Analysis
researchProduct

Multiplicity results for Sturm-Liouville boundary value problems

2009

Multiplicity results for Sturm-Liouville boundary value problems are obtained. Proofs are based on variational methods.

Partial differential equationSturm-Liouville problem variational methodsApplied MathematicsNumerical analysisMultiplicity resultsMathematical analysisSturm–Liouville theoryMixed boundary conditionMathematics::Spectral TheoryMathematical proofCritical point (mathematics)Computational MathematicsSettore MAT/05 - Analisi MatematicaBoundary value problemMathematics
researchProduct

Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains

1995

Pure mathematicslack of emptinesspositive solutionsApplied MathematicsMultiplicity resultsNonlinear elliptic Dirichlet problemsMathematical analysisDirichlet L-functionvariational methodsDirichlet's energyDirichlet distributionExterior domainsDirichlet kernelsymbols.namesakeDirichlet's principlesymbolsExterior domains; lack of emptiness; Nonlinear elliptic Dirichlet problems; positive solutions; variational methodsAnalysisDirichlet seriesMathematics
researchProduct

Multiplicity results for systems of asymptotically linear second order equations

2002

Abstract We prove the existence and multiplicity of solutions, with prescribed nodal properties, for a BVP associated with a system of asymptotically linear second order equations. The applicability of an abstract continuation theorem is ensured by upper and lower bounds on the number of zeros of each component of a solution.

Asymptotically linearAsymptotically linear second order system continuation theoremGeneral MathematicsMultiplicity resultsMathematical analysisSecond order equationStatistical and Nonlinear PhysicsMathematicsAdvanced Nonlinear Studies
researchProduct

Multiplicity results for asymptotically linear equations, using the rotation number approach

2007

By using a topological approach and the relation between rotation numbers and weighted eigenvalues, we give some multiplicity results for the boundary value problem u′′ + f(t, u) = 0, u(0) = u(T) = 0, under suitable assumptions on f(t, x)/x at zero and infinity. Solutions are characterized by their nodal properties.

Asymptotically linearGeneral MathematicsMultiplicity resultsmedia_common.quotation_subjectMathematical analysisZero (complex analysis)InfinityBoundary value problem continuation theorem shooting without uniqueness rotation number Sturm–Liouville Theory weighted eigenvalue multiplicity resultBoundary value problemRotation (mathematics)Eigenvalues and eigenvectorsRotation numberMathematicsmedia_common
researchProduct

Multiplicity of solutions for asymptotically linear $n$-th order boundary value problems

2007

In this paper we investigate existence and multiplicity of solutions, with prescribed nodal properties, to a two-point boundary value problem of asymptotically linear $n$-th order equations. The proof follows a shooting approach and it is based on the weighted eigenvalue theory for linear $n$-th order boundary value problems

n-th order problem asymptotically linear multiplicity results shooting approach weighted eigenvalues
researchProduct

Multiplicity of ground states for the scalar curvature equation

2019

We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…

Multiplicity resultsBubble tower solutions; Fowler transformation; Ground states; Invariant manifold; Multiplicity results; Phase plane analysis; Scalar curvature equation; Shooting methodGround stateMultiplicity resultsInvariant manifoldScalar curvature equation01 natural sciencesBubble tower solutionsCombinatoricsSettore MAT/05 - Analisi Matematica0103 physical sciencesinvariant manifoldground stateScalar curvature equation Ground states Fowler transformation Invariant manifold Shooting method Bubble tower solutions Phase plane analysis Multiplicity resultsFowler transformationMultiplicity result0101 mathematicsphase plane analysiPhase plane analysisPhysicsApplied Mathematics010102 general mathematicsscalar curvature equationShooting methodMultiplicity (mathematics)shooting methodPhase plane analysiGround statesBubble tower solutionbubble tower solutionmultiplicity results.Phase plane analysis010307 mathematical physicsInvariant manifoldScalar curvature
researchProduct

Two-Dimensional Differential Systems with Asymmetric Principal Part

2013

We consider the Sturm–Liouville nonlinear boundary value problem $$\displaystyle\begin{array}{rcl} \left \{\begin{array}{l} x^{\prime} = f(t,y) + u(t,x,y),\\ y^{\prime} = -g(t, x) + v(t, x, y), \end{array} \right.& & {}\\ \begin{array}{l} x(0)\cos \alpha - y(0)\sin \alpha = 0,\\ x(1)\cos \beta - y(1)\sin \beta = 0, \end{array} & & {}\\ \end{array}$$ assuming that the limits \(\lim _{y\rightarrow \pm \infty }\frac{f(t,y)} {y} = f_{\pm }\), \(\lim _{x\rightarrow \pm \infty }\frac{g(t,x)} {x} = g_{\pm }\) exist. Nonlinearities u and v are bounded. The system includes various cases of asymmetric equations (such as the Fucik one). Two classes of multiplicity results are discussed. The first one …

PhysicsCombinatoricsMultiplicity resultsPrincipal partNonlinear boundary value problemDifferential systems
researchProduct