Search results for "Multiplicity results"
showing 10 items of 13 documents
Poincar é-Birkhoff fixed point theorem and periodic solutions of asymptotically linear planar Hamiltonian systems. (Turin Fortnight Lectures on Nonli…
2002
Multiplicity results for fourth order two-point boundary value problems with asymmetric nonlinearities
1998
Multiplicity results for asymmetric boundary value problems with indefinite weights
2004
We prove existence and multiplicity of solutions, with prescribed nodal properties, to a boundary value problem of the formu″+f(t,u)=0,u(0)=u(T)=0. The nonlinearity is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite weights. We first study some auxiliary half-linear, two-weighted problems for which an eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of weighted eigenvalues. The proof is developed in the framework of topological methods and is based on some relations between rotation numbers and weighted eigenvalues.
Multiplicity results for Sturm-Liouville boundary value problems
2009
Multiplicity results for Sturm-Liouville boundary value problems are obtained. Proofs are based on variational methods.
Existence and multiplicity results for semilinear elliptic Dirichlet problems in exterior domains
1995
Multiplicity results for systems of asymptotically linear second order equations
2002
Abstract We prove the existence and multiplicity of solutions, with prescribed nodal properties, for a BVP associated with a system of asymptotically linear second order equations. The applicability of an abstract continuation theorem is ensured by upper and lower bounds on the number of zeros of each component of a solution.
Multiplicity results for asymptotically linear equations, using the rotation number approach
2007
By using a topological approach and the relation between rotation numbers and weighted eigenvalues, we give some multiplicity results for the boundary value problem u′′ + f(t, u) = 0, u(0) = u(T) = 0, under suitable assumptions on f(t, x)/x at zero and infinity. Solutions are characterized by their nodal properties.
Multiplicity of solutions for asymptotically linear $n$-th order boundary value problems
2007
In this paper we investigate existence and multiplicity of solutions, with prescribed nodal properties, to a two-point boundary value problem of asymptotically linear $n$-th order equations. The proof follows a shooting approach and it is based on the weighted eigenvalue theory for linear $n$-th order boundary value problems
Multiplicity of ground states for the scalar curvature equation
2019
We study existence and multiplicity of radial ground states for the scalar curvature equation $$\begin{aligned} \Delta u+ K(|x|)\, u^{\frac{n+2}{n-2}}=0, \quad x\in {{\mathbb {R}}}^n, \quad n>2, \end{aligned}$$when the function $$K:{{\mathbb {R}}}^+\rightarrow {{\mathbb {R}}}^+$$ is bounded above and below by two positive constants, i.e. $$0 0$$, it is decreasing in (0, 1) and increasing in $$(1,+\infty )$$. Chen and Lin (Commun Partial Differ Equ 24:785–799, 1999) had shown the existence of a large number of bubble tower solutions if K is a sufficiently small perturbation of a positive constant. Our main purpose is to improve such a result by considering a non-perturbative situation: we ar…
Two-Dimensional Differential Systems with Asymmetric Principal Part
2013
We consider the Sturm–Liouville nonlinear boundary value problem $$\displaystyle\begin{array}{rcl} \left \{\begin{array}{l} x^{\prime} = f(t,y) + u(t,x,y),\\ y^{\prime} = -g(t, x) + v(t, x, y), \end{array} \right.& & {}\\ \begin{array}{l} x(0)\cos \alpha - y(0)\sin \alpha = 0,\\ x(1)\cos \beta - y(1)\sin \beta = 0, \end{array} & & {}\\ \end{array}$$ assuming that the limits \(\lim _{y\rightarrow \pm \infty }\frac{f(t,y)} {y} = f_{\pm }\), \(\lim _{x\rightarrow \pm \infty }\frac{g(t,x)} {x} = g_{\pm }\) exist. Nonlinearities u and v are bounded. The system includes various cases of asymmetric equations (such as the Fucik one). Two classes of multiplicity results are discussed. The first one …